
Algorithmic Self-Assembly of Circuits

Michael deLorimier Alexandre Mathy Dustin Reishus Rolfe Schmidt
Bilal Shaw Li Chin Wong

August 24, 2002

Abstract

1 Introduction

The order we see in nature is self-assembled: atoms,
crystals, cells, animals, solar systems, and galaxies
are just a few examples. While we have been able to
build phenomenal devices with controlled assembly
techniques, we still cannot engineer machines at the
scale of the ribosome. Can we understand the mech-
anism behind natural self-assembly and harness it to
fabricate new devices? A systematic attack on this
problem as been initiated [5, 1], and in this paper
we use these techniques to explore how self-assembly
could be used to fabricate nanoscale electrical cir-
cuits.

We start with a simple model, where molecules are
thought of as two dimensional square tiles [Wang]
having different glue types on north, east, south and
west sides. These glues have strengths associated
with them which will be important later on. Now
tiles that have matching glues stick to each other.
The model that we have considered is an irreversible
one, which means that once tiles stick together with
a certain bond strength they do not come apart.

In reality, molecular bonds are reversible. But
some bonds are stronger than others, and if a
molecule is attached in more than one place it is
less likely to fall off. Analysis of the thermodynam-
ics of these interactions shows that for some tem-
peratures our model that “tiles with matching glues
stick” is actually fairly accurate [7]. This is called the
T = 1 model: the temperature T is such that only
one matching bond is needed for two tiles to stick to

each other. The behavior is different at other tem-
peratures. As the temperature rises above T = 1,
eventually it reaches a point where in equilibrium, a
tile sticks to other tiles only if it can find two bonds
(or one double strength bond). This gives us a new
model of self assembly which seems more powerful
than the first. Not surprisingly, it is called the T = 2
model.

In this paper our purpose is to assemble some inter-
esting circuit with the T = 2 model of self assembly.
One could imagine fabricating tiles with nano dimen-
sions which have logical gates embedded on their sur-
face. Then one need only program these gates in the
appropriate way to assemble the tiles into meaningful
circuit. For our presentation we chose to assemble the
Fast Fourier Transform (FFT), but the ideas we use
can be easily modified to assemble sorting networks,
power-law crossbars, and various decoders.

Designing a tile system to assemble a network is a
programming task, but the program is massively par-
allel and not at all like programs we are used to writ-
ing for machines with limited numbers of processing
nodes and high context switch overhead. However,
when writing a program for a multi-processor ma-
chine it is possible (and sometimes best) to just use
one processor. Similarly, when designing a tile sys-
tem we can make it emulate a “serial” program to
simplify our task. We do this by taking advantage of
the fact that every bounded CA rule with the Margo-
lus neighborhood can easily translated into a T = 2
tile system. The glues in this tile system correspond
to symbols in the CA rule, and tiles correspond to
rules. When this tile system is seeded with “input
data”, it will assemble the trace of the CA’s evolu-

1

tion on this input.
CA are easy to think about, and we take advantage

of this to design a CA that produces the recursive
shape we need for the FFT network. Once this is
done, we translate the CA rules into a tile system
that uniquely assembles our network.

The sequel proceeds as follows. In Section 2 we
provide a brief overview of the uses and implemen-
tation of the Fourier transform. Section 3 describes
how we designed CA rules to produce the recursive
FFT shape, and follows with a discussion of the ac-
tual T = 2 tile system. Space does not allow a
full presentation of the rules, but this is available
online [4]. With the tile set in hand, we analyze
the (in)tractability of implementing this system with
DNA DX molecule tiles in Section 4. Finally, in Sec-
tion 5 we analyze the error rates of systems like ours
and propose a way to reduce the rate of failure do to
tile misincorporation.

2 The Fast Fourier Transform

For all Abelian groups G, the Fourier Transform is
the unitary change of basis on L2(G) that simultane-
ously diagonalizes all translation invariant operators.
This transform plays a pivotal rôle in pure mathe-
matics. For continuous groups, differential operators
are translation invariant, and differential equations
become algebra problems. Convolutions are just
translation invariant “moving averages”, and become
pointwise multiplications. The applications are not
limited to differential and integral equations: when
G = (R+, ·), and ω =

∑
N δn is the Dirac comb along

the natural numbers, the Fourier transform of ω is
just the Riemann zeta function. Understanding the
zeroes of this function would allow us to place strong
bounds on the distribution of the prime numbers.

As important as the Fourier transform is in pure
Mathematics, most people who use it do so for very
practical reasons: there is a fast divide-and-conquer
algorithm, called the Fast Fourier Transform [FFT],
for computing the transform. This makes it feasible
to evaluate convolutions and solve many differential
equations very quickly by transforming the problem
to the Fourier domain, solving the easier problem,

then performing the inverse FFT to bring the solu-
tion back. This approach is used widely, and in appli-
cations like signal processing speed is so crucial that
is economical to implement the FFT in hardware.

How does the FFT work? On the group G = ZN

the Fourier transform of a function f can be written

f̂(ξ) =
∑

x∈ZN

f(x) exp[−2πixξ/N]

Notice that

f̂(ξ) = f̂even(ξ) + e−2πiξ/N f̂odd(ξ)

when ξ < N/2 and

f̂(ξ) = f̂even(ξ − N/2) − e−2πiξ/N f̂odd(ξ − N/2)

when ξ >= N/2.
So we can evaluate this recursively. By the Master

theorem [2], the running time of this algorithm is

T (N) = N + 2T (N/2) = Θ(N lg N)

which is much faster than the naive Θ(N2) approach.
This algorithm can be implemented as a network

of phase-shifters and adders. If we were given “magic
boxes” that compute f̂even and f̂odd, then it would be
easy to build a network for the full Fourier transform
(see Figure 1).

But we do not need magic- each of these boxes is
simply implementing a smaller FFT, so we can con-
tinue building the network as seen in Figure 2.

There is one problem with this network as pre-
sented. The FFT requires us to keep splitting the
array into even and odd subarrays, but our network
splits it into high and low subarrays. In other words,
we are checking the high bit of the array offset when
we should be checking the low bit. We can fix this by
performing a bit reversal permutation on the array
before passing the array to the FFT network.

3 CA Rules for the FFT Net-
work

To self-assemble a circuit that performs the fast
fourier transform, we envision self-assembly from

2

O
U

T
P

U
T

 ev
en

 tr
an

sf
or

m
er

od
d

tr
an

sf
or

m
er

IN
P

U
T

Figure 1: Implementing an FFT network with magic
boxes

IN
P

U
T

O
U

T
P

U
T

od
d

tr
an

sf
or

m
ev

en
 tr

an
sf

or
m

ev
en

−
ev

en
ev

en
−

od
d

od
d−

od
d

od
d−

ev
en

Figure 2: The FFT network

Figure 3: Self-Assembled FFT Network

a cellular automata perspective. Briefly, the T=2
model of self assembly can be thought of as a 1-
dimensional cellular automata using the Margolus
neighborhood. The specifics of how to transform
1D CA rules into a T=2 tile set will be covered in
more detail in the next section. Thinking of self-
assembly from a CA standpoint allows us to design
self-assembled circuits in terms of particles and col-
lisions, which are CA symbols and interactions be-
tween symbols, respectively.

An FFT network consists of many small logic
blocks interconnected in a very specific way. The
logic blocks perform mulitplications, and the inter-
connects tell them which signals to multiply. The
structure of the circuit is highly self-similar; it is
this recursive structure that led us to believe that
the FFT network was a good candidate for produc-
tion by self-assembly. In our design of the completed
circuit, we have interconnects travelling horizontally
and vertically through every tile. At certain locations
along diagnals, the horizontal and vertical busses are
connected at a logic block. See Figure 3 below for a
schematic diagram of the logic blocks and intercon-
nects.

3

Our self-assembled circuit consists of tiles that line
up the interconnects and places the logic blocks in
the correct positions. To locate the places where a
logic block should be, we use a system of particles
and collisions. As we mentioned before, the particles
are symbols in a 1D CA using the Margolus neigh-
borhood. The Margolus neighborhood is a way of
implementing reversible CA rules. It consists of up-
dating the CA in two phases: In the first phase, an
even numbered cell looks at its neighbor to the left,
an odd numbered cell looks at its neighbor to the
right, and every cell updates based on its symbol and
its neighbor’s symbol. In the second phase, each cell
looks at its other neighbor.

We created CA rules for four kinds of particle
movement: stationary, left and right unit speed, and
left moving half speed. Stationary particles are called
µ, left moving particles are called λ, right moving par-
ticles are called ρ, and left moving half speed particles
are called γ. The CA rules to implement stationary
particles and particles that move with speed one are
trivial. A half speed left moving particle’s CA rules
are slightly more complex. It completes one cycle ev-
ery four phases of the CA and moves two cells per
cycle. The first two phases it moves with speed one,
and the next two phases it is stationary, after which
it repeats this procedure. The movement must be
two cells every four phases, because if it moved only
one cell in two phases it would be in the wrong neigh-
borhood and unable to move the following phase.

As you can see from the collision map in Figure 4,
the FFT circuit has a recursive structure. At the top
(time t0), the only particles are the left and right
boundry particles and a stationary particle in the
middle. These immediatly eject ρ, λ, and γ particles.
When the ρ and λ collide in the center, they create
a µ and keep travelling. The λ collides with the left
boundry, the ρ collides with the right boundry, and
the γ collides with the µ at time t1. This completes
the first section of the FFT network. Here the recur-
sion enters: The right and left boundries eject ρ and
λ particles and the µ ejects ρ, λ and γ particles and
serves as both the left boundry and the right boundry
for the two halves of the circuit. This process con-
tinues until time tlog(n), when every particle is a µ.
If logic blocks are placed on every ρ tile, the FFT

Figure 4: Collision Map

network is complete.

There are several difficulties when creating the
rules for the CA with the Margolus neighborhood.
First, the λ and ρ cannot start in the same phase.
The neighborhood adds constraints so that the par-
ticles cannot always move in a particular direction;
sometimes they must wait one phase before moving.
An additional difficulty with creating CA rules for
particle movement is that the number of CA symbols
required typically grows as a power of the number
of logical particles. This is compounded by the fact
that the number of explicit rules can grow as a power
of the number of rules.

This leads to a large number of explicit rules for a
relatively small number of logical particles. This ends
up being very bad for the implementation of any self-
assembled circuit, because the each rule corresponds
to exactly one tile. This is how the CA model, in
which we designed our FFT network, can get trans-
lated to a T = 2 tile set. Along the boundries and
on the input row, tiles with double bonds are used.
For every rule in the CA, one tile is created in the
tile set.

4

4 Implementation Issues

We explored the feasibility of experimentally build-
ing the self-assembled Fast Fourier Transform using
DNA tiles. Suppose we use the double crossover (DX)
molecule [6] to implement our one tile-one CA rule
and one bond-one CA tile self-assembly system. The
four sticky ends of the DX molecule will represent
the north, south, east and west glues of the DNA
tile. The south and west glue will represent the in-
put and the north and east glue will represent the
output.

To design the sequences of the unique sticky ends,
we need to consider the optimal length and the cor-
responding sequence complexity. The number of tiles
required to build the network, excluding the seed
tiles, will be 73. If glue A exists in the north posi-
tion, the complementary sequence will represent the
A-south glue. A total of 2 different sequences will
be required to represent this glue. Otherwise, if a
glue occurs in both the north/south and east-west
position, a total of 4 different sequences will be re-
quired to represent the glue. An analysis of the CA
rules that showed that there are 45 symbols that oc-
cur exclusively in the north/south or east/ west posi-
tion, and 24 symbols occur in both north/south and
east/west position. Therefore a total of 69 differ-
ent glues and the corresponding 69 complementary
strands are required to build the experimental tile
set. Assuming that we use the same sequence for
all the non-sticky end portions of the DX molecule,
we will be synthesizing 140 (2 + 69 + 69) different
strands of DNA.

Assuming that we use sticky-ends which are 6nt
long. The sequence space that can possibly be ex-
plored is 4096. However, in an attempt to control
the hybridization between strands, the GC-content
of each strand is kept constant at 50%. This re-
duces the sequence space to 1280. The sequence de-
sign should also attempt to avoid formation of unde-
sired secondary structures and to maximize the inter-
strand interactions to form a stable double crossover
structure. The 6nt sticky-ends should also not be
complementary to the tile core.

Potential technical problems that will be faced in-
clude the problem of stoichiometry. According to the

R R

R R
R

R

%*^#$

Particle Path

 Blocked

R
R

New particle

spontaneously formed!

Figure 5: Errors that can occur in CA rule assembly

T = 2 model, concentration of different strands will
be kept constant during self-assembly. However, as
self-assembly occurs experimentally, the concentra-
tion of molecules that are being self-assembled de-
creases. This problem is even more pronounced if one
sticky-end is used heavily compared to other sticky
ends. Another example of a technical problem will
be finding the optimal temperature for optimal self-
assembly. Different sticky-ends might interact op-
timally at different temperatures. This problem is
partially solved by keeping the GC-content constant.

As shown in the analysis, implementing the self-
assembly of the FFT circuit using DNA tiles is not
an easy task, although not entirely impossible.

5 Error Correction

Our tile sets depend critically on particle scattering
CA rules. Unfortunately, assembly errors do occur
and the tile sets we have designed are particularly
sensitive to these errors:

• If a particle tile gets misincorporated it will pro-
pogate and be locked in quickly.

• If a misincorporation occurs on a particle path
it destroys the particle.

To see this more quantitatively, consider a tile system
that implements a CA rule with one moving particle
in open space that has a misincorporation rate of ε.
It is straightforward to show that in an assembly of
area A

• the expected number of spontaneous wires is
εA + o(ε)

5

Figure 6: A self monitoring particle team

• the expected path length is 1−ε
ε

Thus if 1 out of every tiles is a misincorporation
(which would be an excellent error rate in a system
with 73 tiles), we can only expect particle paths of
length 99.

We would like to replace this with something more
robust, so we propose using a “team” of particles
that monitors and repairs itself. Figure 6 shows a
schematic view of how such a system could work-
three particles move in synchrony, sending signals to
their neighbors. A set of CA rules that implements
this strategy to repair all single errors in the sig-
nal path and prevent all single errors from creating
a spontaneous particle is available at http://www-
scf.usc.edu/ rolfesch/teamspirit.html. This set of
rules fully repairs all spatially isolated errors within
a constant number of time steps, but may fail to cor-
rect multiple errors. Thus it improves the expected
particle path length to Ω(ε−2) and reduces the num-
ber of spontaneous particles in an assembly of area
A to O(ε2).

However, this set of rules is enormous compared to
the initial two free-particle rules, particularly if wild-
cards need to be expanded. We note that the rules
were designed every symbol except for 0 has a unique
left and right neighbor, so a misincorporation cannot
lead to a valid rule application at the next step. This
prevents erroneous tiles from being locked in quickly,
and may allow us to implement our wildcard rules

with tiles that simply have no glue on the wildcard
side. These wildcard tiles will have no particular ad-
vantage over competing tiles when attaching to an
erroneous assembly, but once attached they can be
locked in by valid rule applications immediately.

In principle, this mechanism can be extended to
teams of k particles that either simulate an error-
correcting CA rule like GKL [3], or implement a vot-
ing protocol to determine whether the path should
continue or terminate. The number of tiles required
for such a system would be constant for the GKL
rule, and polynomial in k for the voting rule. This
sounds reasonable, but in practice the tile sets are
unreasonably large. As we noted above, asymptotics
can be falsely reassuring when designing DNA tiles
for self-assembly. The constants are critical, and the
absolute number of tiles must be small.

6 Conclusion

Our work has shown us that it is fairly simple to
design tile systems that assemble common networks
with O(1) tiles. Unfortunately we also realize that it
is very difficult to assemble common networks with
a reasonable number of tiles. We relied heavily on
CA rules to design our tile systems, and it would be
interesting to know how much efficiency we give up
with this approach. The CA rule approach also led us
to a simple error correction scheme, which seems ap-
pealing in principle, but uses far too many tiles to be
practical. In short, we have answered the querstions
we set out to answer, but the standards we were using
to measure success seem too liberal. We now realize
that the real problems are much more challenging.

References

[1] L. Adleman. Toward a mathematical theory of
self-assembly, January 2000.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2002.

[3] P. Gacs, G. Kurdiumov, and L. Levin. One-
dimensional homogeneous media dissolving fi-

6

nite islands. Problemy Peredachi Informatsii,
14(3):223–226, 1978.

[4] http://www-scf.usc.edu/ rolfesch/cbsss.html.

[5] P. Rothemund and E. Winfree. Theprogram size
complexity of self-assembled squares. In STOC,
2000.

[6] E. Winfree. Ph.d. Thesis, Caltech, 1998.

[7] E. Winfree. Simulations of computing by self-
assembly. In Proceedings of the 4th DIMACS
Meeting on DNA Based Computers, June 1998.

7

